




	Tet.Lett., <u>27</u> ,21,2379 (1986)
A NOVEL SYNTHESIS OF EPOXIDES AND ALLYLIC ALCOHOLS FROM CARBONYL COMPOUNDS THROUGH α , β -epoxy sulfoxides	
Tsuyoshi Satoh, Youhei Kaneko and Koji Yamakawa Science University of Tokyo, Ichigaya-funagawara-machi,Tokyo 162, Japan	
Epoxides and allylic alcohols are synthesized from carbonyl compounds and 1-chloroalkyl phenyl sulfoxides through α , β -epoxy sulfoxides on treatment with n-butyllithium.	
$ \begin{array}{c} R^{2} \\ R^{3} = O \end{array} \xrightarrow{PhSCHCl} PhS \\ R^{1} \end{array} \xrightarrow{PhS} R^{1} \xrightarrow{R^{1}} R^{2} \xrightarrow{n-BuLi} R^{1} \xrightarrow{H} O \\ R^{2} \end{array} \xrightarrow{R^{1} = BuLi} R^{2} \xrightarrow{n-BuLi} R^{3} \xrightarrow{R^{1} = CH_{2}Ar} R^{3} \end{array} $	
$ \begin{vmatrix} R_{3} \geq 0 & -P_{13} \geq 0 \\ R^{3} \geq 0 & -P_{13} \geq 0 \\ R^{1} & R^{1} & R^{3} & \xrightarrow{H=D_{12}} \\ R^{1} & R^{1} & R^{1} \\ R^{1} & R^{1} \\$	\mathbf{R}^3 and or \mathbf{R}^3
	R ⁺ =CH ₂ Ar
	Tet.Lett., <u>27</u> ,21,2383 (1986)
NOVEL DISTANNOXANE-CATALYZED TRANSESTERIFICATION AND A NEW ENTRY TO ∝ ← UNSATURATED CARBOXYLIC ACIDS Junzo Otera,* Toru Yano, Atsuya Kawabata, and Hitosi Nozaki	
Okayama University of Science, Ridai-cho, Okayama 700, Japan	
Novel distannoxane-catalyzed transesterification reaction has been developed which affords various types of esters under very mild conditions.	
$\frac{R''OH, XBu_2SnOSnBu_2Y}{RCOOR'} RCOOR''$	
L	
	Tet.Lett., <u>27</u> ,21,2387 (1986)
CHUANBEINONE, A NOVEL D/E CIS-(22R,25S)-5α-CEVANINE ALKALOID FROM CHINESE HERBAL DRUG, CHUAN-BEI-MU.	
Ko Kaneko, Takao Katsuhara, and Hiroshi Mitsuhashi Faculty of Pharmaceutical Sciences, Hokkaido University,	
Sapporo 060, Japan., Yuh-Pan Chen and Hong-Yen Hsu, Oriental Healing Arts Institute, Long Beach, Cal. 90815, USA, Motoo Shiro, Shionogi Research Laboratory, Osaka 553, Japan.	
Chuanbeinone: D/E cis -(22R, 25S)-20-deoxy-5 α -cevanine-3 β -ol-	
6-on: was isolated from chinese herbal drug, chuan-bei-mu (from	
H I Chuanbeinone	
SYNTHETIC STUDIES ON FUMITREMORGIN I. SYNTHESIS OF (±)-12-DEOXY-12-EPIFUMITREMORGIN B	Tet.Lett., <u>27</u> ,21,2391 (1986)
Shin-ichi Nakatsuka,* Hideki Miyazaki, Katsunori Teranishi and Toshio Goto Laboratory of Organic Chemistry, Faculty of Agriculture, Nagoya University, Nagoya 464, Japan	
The aldol product of 2 and 3 was a mixture of four stereoisomers 4, which were converted to single tetrahydro- β -carboline derivative, (±)-12-deoxy-12-epifumitremorgin B (5), in good yield.	
	╱ <u>╷</u> ─╷╱╀┸ _╿ ┵ <u>╮┎ၭ៱</u> _ <u></u> ┍╱╻─╻╱╀┸╷╲╷

Tet.Lett., 27, 21, 2395 (1986) REDUCTIVE GENERATION OF ACTIVE ZERO-VALENT TIN IN SnCl, -A1 SYSTEM AND ITS USE FOR HIGHLY DIASTEREOSELECTIVE REACTION OF CINNAMYL CHLORIDE AND ALDEHYDES Kenji Uneyama, Hiromi Nanbu, and Sigeru Torii* Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700, Japan Active zero-valent tin generated in SnCl_-Al system promotes highly diastereoselective reaction of cinnamyl chloride with aldehydes. SnCl₂ - Al $_{Ph} \sim _{C1}$ тнг - н₂0 RCHO Ph Tet.Lett., 27, 21, 2397 (1986) STUDIES ON THE Pd CATALYZED REACTION OF PERFLUOROALKYL AND POLYFLUOROALKYL IODIDES WITH TERTIARY AMINES Yaozeng Huang and Qilin Zhou Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai China Reaction of perfluoroalkyl and polyfluoroalkyl $R_{F_{A}}$ C=CHN(CH₂CH₂R)₂, R=H iodides with tertiary amines gave enamines. $3(\text{RCH}_2\text{CH}_2)_3\text{N} + 2R_F\text{CF}_2\text{I} \xrightarrow{Pd} R_F\text{CF}_2\text{C} = \text{CHN}(\text{CH}_2\text{CH}_2\text{R})_2 \xrightarrow{H_3^+\text{O}} R_F\text{CF}_2\text{C} = \text{CHO}, R = \text{CH}_3, C_2\text{H}_5$ Tet.Lett.,27,21,2401 (1986) A BIOMIMETIC SYNTHESIS OF POLYCYCLIC POLYOXYGENATED AROMATIC COMPOUNDS VIA POLYKETIDES Masahiko Yamaguchi[°], Koichi Hasebe, and Toru Minami Department of Industrial Chemistry, Kyushu Institute of Technology Polyoxygenated naphthalenes, anthracenes, and a naphthacene are synthesized from glutarates and acetoacetate dianion via polyketides. $\begin{array}{c} \begin{array}{c} \begin{array}{c} c_{0,R} \\ c_{0,R} \end{array} \end{array} \xrightarrow{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \end{array}{} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \end{array} \\ \end{array} \xrightarrow{ \begin{array}{c} \end{array}{} \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \end{array}{} \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \end{array} } \begin{array}{c} \begin{array}{c} \end{array}{} \\ \end{array} \xrightarrow{ \begin{array}{c} \end{array} \end{array} \xrightarrow{ \begin{array}{c} \end{array} } \begin{array}{c} \end{array} \xrightarrow{ \begin{array}{c} \end{array}{} \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \end{array} } \begin{array}{c} \end{array} \xrightarrow{ \end{array} } \begin{array}{c} \end{array} \xrightarrow{ \begin{array}{c} \end{array} } \begin{array}{c} \end{array} \xrightarrow{ \begin{array}{c} \end{array} } \begin{array}{c} \end{array} \xrightarrow{ } \end{array} \xrightarrow{ } \end{array} \xrightarrow{ } \begin{array}{c} \end{array} \xrightarrow{ } \end{array}$ } \xrightarrow{ } \end{array} Tet.Lett.,27,21,2405 (1986) STEREOSELECTIVE KINETIC PROTONATION OF CHIRAL Y-LACTONE ENOLATES Seiichi Takano , Junko Kudo, Michiyasu Takahashi, and Kunio Ogasawara -----Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan The first examples of regio- and stereoselective protonation directed by silicon atom and enantiodiscriminating protonation with chiral proton source are shown via lithium and trimethylsilyl enolates of five chiral Y-lactone substrates. $H_{R_{1}} \xrightarrow{H_{R_{2}}} H_{R_{2}} \xrightarrow{R_{1}} H_{R_{2}} \xrightarrow{R_{2}} H_{R_{2}} \xrightarrow{H_{R_{2}}} H_{R_{2}} \xrightarrow{R_{1}} \stackrel{: Bn, Tr}{R_{2}} \stackrel{R_{1}}{: alkyl, allyl, aryl} \xrightarrow{R_{1}} \stackrel{: Bn, Tr}{R_{2}} \stackrel{R_{1}}{: alkyl, allyl, aryl}$

